Линеаризованные уравнения движения

Уравнения динамики продольного движения самолета существенно упрощаются при рассмотрении малых отклонений от горизонтального полета самолета с постоянной скоростью. Проведём линеаризацию уравнений углового продольного движения самолёта. Будем полагать, что за время переходных процессов по углам и угловым скоростям тяга двигателей P, модуль скорости V и высота полёта H остаются неизменными. Из выражений (5) и (11) получим:

(12)

Из выражений (3) и (9) получим:

(13)

Момент или сила с верхним индексом означают здесь соответствующую частную производную. Обозначим:

; (14)

Оказывается, что параметры и являются чрезвычайно информативными с точки зрения оценки режима полёта и качества угловых процессов самолёта. Пренебрежём, как это часто делается для маневренных самолётов, слагаемым в правой части уравнения (13). С учётом равенства (6) получим уравнение для производной приращения угла атаки:

(15)

Уравнения (12) и (15) являются линейными дифференциальными уравнениями углового движения самолета в отклонениях.

Рассмотрим подробнее выражение (8) для нормальной перегрузки. При неизменном во времени модуле скорости V можно полагать, что сила тяги P примерно равна силе лобового сопротивления Q. Тогда

(16)

Теперь перейдём к приращениям:

(17)

Тогда, полагая и пренебрегая величиной , с учётом (14) для углов, измеряемых не в радианах, а в градусах, получим:

. (18)

В предыдущих выражениях g – ускорение свободного падения, m – масса самолета. При численных расчетах полагаем м/с2.

Из (13) и (14), пренебрегая величиной , получим формулу для приращения ускорения самолёта по оси подъёмной силы:

. (19)

Учитывая (16), получим связь между приращениями нормальной перегрузки и ускорением

. (20)

Таким образом, о величине приращения нормальной перегрузки можно судить по показаниям датчика нормального ускорения (акселерометра).

Примем в качестве переменных состояния приращения угла атаки и угловой скорости тангажа. Заменив в правой части уравнения (12) выражением (15), получим следующие уравнения состояния:

, (21)

, (22)

где угловые величины выражены в градусах, а скорость – м/с.

В таблице приведены числовые данные для коэффициентов линеаризованных уравнений самолета для различных высот и скоростей полета. Вместо воздушной скорости полета V в таблице данных используется относительная скорость

, (23)

где величину M называют числом Маха, – скорость звука на данной высоте.